

Estimating Semantic Similarity between In-Domain and Out-of-Domain Samples

Rhitabrat Pokharel and Ameeta Agrawal PortNLP Lab, Department of Computer Science, Portland State University *SEM, ACL 2023, Toronto

MOTIVATION

Models that demonstrate strong performance on carefully curated test/train sets may not necessarily

OOD vs OODist

 Data from a related but different domain^[1] (Amazon vs • Data collected at a different time^[3] maybe

showcase equivalent levels of effectiveness on realworld datasets.

accurate accurate accurate

Twitter sentiment)

Different datasets for the same task^[2] (SST, IMDb, and Yelp for sentiment classification)

under different settings

• Datasets that are not in the training set^[4]

DATASETS

DatasetsTaskIMDb, SST2, YelpSentiment AnalysisSCIQ, Commonsense, QASCMCQSQUAD, News, TriviaExtractive Question AnsweringMNLI, WNLI, QNLINatural Language Inference

Out-of-domain (OOD) vs Out-of-distribution (OODist)

RESULTS

- 1 00					
L 1.00	-1	-0.33	1	1	imdb
- 0.75	0.33	-0.33	1	-0.33	sst
0.50	-1	-0.33	0.33	0.33	yelp
-0.50	-1	-0.82	0.82	1	sciq
- 0.25	1	0.33	-1	-1	cs
0.00	-0.33	-1	1	0.33	qasc
- 0.00	0.82	-0.33	0.33	0.33	squad
0.25	0.33	0.33	-0.33	0.33	news
0.50	-0.33	-0.33	0	0.82	trivia
0.50	0.82	-0.33	-0.33	-0.33	mnli
0.75	Ο	-0.33	-0.33	-0.33	wnli
	-0.33	-0.33	0.33	0.33	qnli
-1.00					

For each of train, validation (when available), and test sets, we **downsampled** to the size of the smallest dataset.

METHODOLOGY

Cosine Mauve Wstn JSD

					1 0 0
imdb	0.95	0.99	-0.99	-0.96	- 1.00
sst	-0.86	0.99	-0.95	0.9	- 0.75
yelp	0.99	-0.26	0.029	-1	0 5 0
sciq	0.9	0.77	-0.77	-0.92	- 0.50
cs	-0.76	-0.7	0.25	0.85	- 0.25
qasc	0.34	0.56	-0.79	-0.38	- 0.00
squad	0.89	0.91	-0.53	0.99	- 0.00
news	0.37	-0.87	0.7	0.52	0.25
trivia	0.8	-0.11	-0.24	-0.44	- 0.50
mnli	-0.65	-0.21	-0.56	0.94	0.50
wnli	0.16	-0.56	-0.51	-0.29	0.75
qnli	0.78	0.5	-0.43	-0.72	- 1.00
	Cosine	Mauve	Wstn	JSD	1.00

Wstn and cosine show the most consistent correlation

Correlated?

CONCLUSION CODE & PAPER

- Wasserstein could be a potential metric for determining OOD samples
- Model does not always perform worse on OOD samples

[1] Dai, Wenyuan, Gui-Rong Xue, Qiang Yang, and Yong Yu. "Co-clustering based classification for out-of-domain documents." [2] Chrysostomou, George, and Nikolaos Aletras. "An empirical study on explanations in out-of-domain settings." [3] Ovadia, Yaniv, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper Snoek. "Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift." [4] Lin, Bill Yuchen, Sida Wang, Xi Victoria Lin, Robin Jia, Lin Xiao, Xiang Ren, and Wen-tau Yih. "On continual model refinement in out-of-distribution data streams."